189 research outputs found

    Development of multiple media documents

    Get PDF
    Development of documents in multiple media involves activities in three different fields, the technical, the discoursive and the procedural. The major development problems of artifact complexity, cognitive processes, design basis and working context are located where these fields overlap. Pending the emergence of a unified approach to design, any method must allow for development at the three levels of discourse structure, media disposition and composition, and presentation. Related work concerned with generalised discourse structures, structured documents, production methods for existing multiple media artifacts, and hypertext design offer some partial forms of assistance at different levels. Desirable characteristics of a multimedia design method will include three phases of production, a variety of possible actions with media elements, an underlying discoursive structure, and explicit comparates for review

    Bogomol'nyi solitons in a gauged O(3)O(3) sigma model

    Get PDF
    The scale invariance of the O(3)O(3) sigma model can be broken by gauging a U(1)U(1) subgroup of the O(3)O(3) symmetry and including a Maxwell term for the gauge field in the Lagrangian. Adding also a suitable potential one obtains a field theory of Bogomol'nyi type with topological solitons. These solitons are stable against rescaling and carry magnetic flux which can take arbitrary values in some finite interval. The soliton mass is independent of the flux, but the soliton size depends on it. However, dynamically changing the flux requires infinite energy, so the flux, and hence the soliton size, remains constant during time evolution.Comment: 10 pages, Latex, 2 postscript figure

    Towards a non-abelian electric-magnetic symmetry: the skeleton group

    Get PDF
    We propose an electric-magnetic symmetry group in non-abelian gauge theory, which we call the skeleton group. We work in the context of non-abelian unbroken gauge symmetry, and provide evidence for our proposal by relating the representation theory of the skeleton group to the labelling and fusion rules of charge sectors. We show that the labels of electric, magnetic and dyonic sectors in non-abelian Yang-Mills theory can be interpreted in terms of irreducible representations of the skeleton group. Decomposing tensor products of these representations thus gives a set of fusion rules which contain information about the full fusion rules of these charge sectors. We demonstrate consistency of the skeleton's fusion rules with the known fusion rules of the purely electric and purely magnetic magnetic sectors, and extract new predictions for the fusion rules of dyonic sectors in particular cases. We also implement S-duality and show that the fusion rules obtained from the skeleton group commute with S-duality

    A Chern-Simons approach to Galilean quantum gravity in 2+1 dimensions

    Full text link
    We define and discuss classical and quantum gravity in 2+1 dimensions in the Galilean limit. Although there are no Newtonian forces between massive objects in (2+1)-dimensional gravity, the Galilean limit is not trivial. Depending on the topology of spacetime there are typically finitely many topological degrees of freedom as well as topological interactions of Aharonov-Bohm type between massive objects. In order to capture these topological aspects we consider a two-fold central extension of the Galilei group whose Lie algebra possesses an invariant and non-degenerate inner product. Using this inner product we define Galilean gravity as a Chern-Simons theory of the doubly-extended Galilei group. The particular extension of the Galilei group we consider is the classical double of a much studied group, the extended homogeneous Galilei group, which is also often called Nappi-Witten group. We exhibit the Poisson-Lie structure of the doubly extended Galilei group, and quantise the Chern-Simons theory using a Hamiltonian approach. Many aspects of the quantum theory are determined by the quantum double of the extended homogenous Galilei group, or Galilei double for short. We study the representation theory of the Galilei double, explain how associated braid group representations account for the topological interactions in the theory, and briefly comment on an associated non-commutative Galilean spacetime.Comment: 38 pages, 1 figure, references update

    The Spectrum of Bogomol'nyi Solitons in Gauged Linear Sigma Models

    Get PDF
    Gauged linear sigma models with C^m-valued scalar fields and gauge group U(1)^d, d \leq m, have soliton solutions of Bogomol'nyi type if a suitably chosen potential for the scalar fields is also included in the Lagrangian. Here such models are studied on (2+1)-dimensional Minkowski space. If the dynamics of the gauge fields is governed by a Maxwell term the appropriate potential is a sum of generalised Higgs potentials known as Fayet-Iliopoulos D-terms. Many interesting topological solitons of Bogomol'nyi type arise in models of this kind, including various types of vortices (e.g. Nielsen-Olesen, semilocal and superconducting vortices) as well as, in certain limits, textures (e.g. CP^(m-1) textures and gauged CP^(m-1) textures). This is explained and general results about the spectrum of topological defects both for broken and partially broken gauge symmetry are proven. When the dynamics of the gauge fields is governed by a Chern-Simons term instead of a Maxwell term a different scalar potential is required for the theory to be of Bogomol'nyi type. The general form of that potential is given and a particular example is discussed.Comment: 32 pages, harvmac, no figure

    Generalised Chern-Simons actions for 3d gravity and kappa-Poincare symmetry

    Get PDF
    We consider Chern-Simons theories for the Poincare, de Sitter and anti-de Sitter groups in three dimensions which generalise the Chern-Simons formulation of 3d gravity. We determine conditions under which kappa-Poincare symmetry and its de Sitter and anti-de Sitter analogues can be associated to these theories as quantised symmetries. Assuming the usual form of those symmetries, with a timelike vector as deformation parameter, we find that such an association is possible only in the de Sitter case, and that the associated Chern-Simons action is not the gravitational one. Although the resulting theory and 3d gravity have the same equations of motion for the gauge field, they are not equivalent, even classically, since they differ in their symplectic structure and the coupling to matter. We deduce that kappa-Poincare symmetry is not associated to either classical or quantum gravity in three dimensions. Starting from the (non-gravitational) Chern-Simons action we explain how to construct a multi-particle model which is invariant under the classical analogue of kappa-de Sitter symmetry, and carry out the first steps in that construction.Comment: 31 pages, minor corrections and additional comment

    Static intervortex forces

    Full text link
    A point particle approximation to the classical dynamics of well separated vortices of the abelian Higgs model is developed. A static vortex is asymptotically identical to a solution of the linearized field theory (a Klein-Gordon/Proca theory) in the presence of a singular point source at the vortex centre. It is shown that this source is a composite scalar monopole and magnetic dipole, and the respective charges are determined numerically for various values of the coupling constant. The interaction potential of two well separated vortices is computed by calculating the interaction Lagrangian of two such point sources in the linear theory. The potential is used to model type II vortex scattering.Comment: Much shorter (10 pages) published version, new titl

    Quantisation of Monopoles with Non-abelian Magnetic Charge

    Get PDF
    Magnetic monopoles in Yang-Mills-Higgs theory with a non-abelian unbroken gauge group are classified by holomorphic charges in addition to the topological charges familiar from the abelian case. As a result the moduli spaces of monopoles of given topological charge are stratified according to the holomorphic charges. Here the physical consequences of the stratification are explored in the case where the gauge group SU(3) is broken to U(2). The description due to A. Dancer of the moduli space of charge two monopoles is reviewed and interpreted physically in terms of non-abelian magnetic dipole moments. Semi-classical quantisation leads to dyonic states which are labelled by a magnetic charge and a representation of the subgroup of U(2) which leaves the magnetic charge invariant (centraliser subgroup). A key result of this paper is that these states fall into representations of the semi-direct product U(2) \semidir R^4. The combination rules (Clebsch-Gordan coefficients) of dyonic states can thus be deduced. Electric-magnetic duality properties of the theory are discussed in the light of our results, and supersymmetric dyonic BPS states which fill the SL(2,Z)-orbit of the basic massive W-bosons are found.Comment: 57 pages, harvmac, amssym, two eps figures, minor mistakes and typos corrected, references added; to appear in Nucl. Phys.

    Anyonic Bogomol'nyi Solitons in a Gauged O(3) Sigma Model

    Get PDF
    We introduce the self-dual abelian gauged O(3)O(3) sigma models where the Maxwell and Chern-Simons terms constitute the kinetic terms for the gauge field. These models have quite rich structures and various limits. Our models are found to exhibit both symmetric and broken phases of the gauge group. We discuss the pure Chern-Simons limit in some detail and study rotationally symmetric solitons.Comment: 14 pages, 6 Postscript figures uuencoded, written in REVTe

    Mapping class group actions in Chern-Simons theory with gauge group GgG\ltimes\mathfrak{g}^*

    Full text link
    We study the action of the mapping class group of an oriented genus g surface with n punctures and a disc removed on a Poisson algebra which arises in the combinatorial description of Chern-Simons gauge theory when the gauge group is a semidirect product GgG\ltimes\mathfrak{g}^*. We prove that the mapping class group acts on this algebra via Poisson isomorphisms and express the action of Dehn twists in terms of an infinitesimally generated G-action. We construct a mapping class group representation on the representation spaces of the associated quantum algebra and show that Dehn twists can be implemented via the ribbon element of the quantum double D(G) and the exchange of punctures via its universal R-matrix.Comment: 30 pages, 5 eps figures; corrections concerning the mapping class group which acts on the Poisson algebra discussed in the pape
    corecore